各素因数ごとに 一般化Lucasの定理 で を計算し、中国剰余定理で解を復元します。
一般化Lucasの定理の詳細は参考文献をご覧ください。
計算量は前計算時間・空間、クエリ時間になります。
内訳は以下の通りです。
なお本問の制約範囲外ですが、抽象化の際にはや、のケースに注意してください。
一般化Lucasの定理と東大数学2021 - mathlog
https://mathlog.info/articles/1851
解答例では、二項係数が与えられるたびに階乗を計算しています。
xxxxxxxxxx
n,r,m = map(int,input().split())
c = int(input())
p = list(map(int,input().split()))
e = list(map(int,input().split()))
#convert x-adic number
def convert(n,x):
a = []
while n > 0:
a.append(n % x)
n //= x
return a + [0]
#restore x-adic number to decimal
def restore(a,x):
return sum(n * x ** i for i,n in enumerate(a))
#calculate smallest n: n ≡ x1 mod y1 ≡ x2 mod y2
def CRT(x1, y1, x2, y2):
a = (x2 - x1) * pow(y1, -1, y2) % y2
return a * y1 + x1
#calculate nCr mod p^e(=m) (p: prime)
def generalized_Lucas_theorem(n,r,p,e):
m = p ** e
#f[x]: x!_p mod m: factorial of x, skipping factors that are multiples of p
f = [1] * m
for i in range(2, m):
if i % p != 0:
f[i] = f[i-1] * i % m
else:
f[i] = f[i-1]
#define L(= n - r) and convert n,r,L to p-adic number
L = n - r
n_p = convert(n,p)
r_p = convert(r,p)
L_p = convert(L,p)
r_p.extend([0] * (len(n_p) - len(r_p)))
L_p.extend([0] * (len(n_p) - len(L_p)))
#epsilon[d]: eps[-1] = 0, eps[d] = 1 if r_p[d] + L_p[d] + eps[d-1] >= p else 0
eps = [0] * len(n_p)
for d in range(len(n_p) - 1):
if r_p[d] + L_p[d] + eps[d-1] >= p:
eps[d] = 1
ans = 1 if p == 2 and e >= 3 else -1 #delta_{p^e}
ans = pow(ans, sum(eps[e-1:-1]), m) #delta_{p^e} ^ k_{e-1}
ans *= pow(p, sum(eps[:-1]), m) #p^{k_0}
ans %= m
for d in range(len(n_p)):
a = restore(n_p[d: d+e], p)
b = restore(r_p[d: d+e], p)
c = restore(L_p[d: d+e], p)
ans *= f[a] * pow(f[b] * f[c] % m, -1, m) % m
ans %= m
return ans
lucas = [generalized_Lucas_theorem(n,r,prime,exp) for prime,exp in zip(p,e)]
ans,mod = 0,1
for rem,prime,exp in zip(lucas,p,e):
ans = CRT(ans, mod, rem, prime ** exp)
mod *= prime ** exp
print(ans)
時間・空間で階乗を前計算します。
二項係数クエリは1個あたりで計算します。
xxxxxxxxxx
class binomial_coefficient_Lucas_theorem:
def __init__(self, m):
self._p = []
for p in range(2, m): #prime factorization
if p ** 2 > m:
break
if m % p == 0:
c = 0
while m % p == 0:
m //= p
c += 1
self._p.append((p, c, p ** c))
if m > 1:
self._p.append((m, 1, m))
for t, (p, e, m) in enumerate(self._p):
f = [1] * m
g = [1] * m
for i in range(2, m):
f[i] = f[i - 1]
if i % p != 0:
f[i] = f[i] * i % m
g[m - 1] = pow(f[m - 1], -1, m)
for i in range(m - 1, 1, -1):
g[i - 1] = g[i]
if i % p != 0:
g[i - 1] = g[i - 1] * i % m
self._p[t] = (p, e, m, f, g)
def _convert(self, n, p): #convert decimal to p-adic number
a = []
while n > 0:
a.append(n % p)
n //= p
return a + [0]
def _restore(self, a, p): #restore p-adic number to decimal
return sum(d * p ** i for i,d in enumerate(a))
def _CRT(self, x1, y1, x2, y2): #smallest n: n ≡ x1 mod y1 ≡ x2 mod y2
a = (x2 - x1) * pow(y1, -1, y2) % y2
return a * y1 + x1
def _generalized_Lucas_theorem(self, n, r, x):
if n < r or n < 0:
return 0
p, e, m, f, g = x
l = n - r
n_c = self._convert(n, p)
r_c = self._convert(r, p)
l_c = self._convert(l, p)
r_c.extend([0] * (len(n_c) - len(r_c)))
l_c.extend([0] * (len(n_c) - len(l_c)))
c = [0] * len(n_c)
for d in range(len(c) - 1):
if r_c[d] + l_c[d] + c[d - 1] >= p:
c[d] = 1
if p == 2 and e >= 3:
a = 1
else:
a = -1
a = pow(a, sum(c[e - 1: -1]), m)
a *= pow(p, sum(c[:-1]), m)
a %= m
for d in range(len(n_c)):
n_d = self._restore(n_c[d: d + e], p)
r_d = self._restore(r_c[d: d + e], p)
l_d = self._restore(l_c[d: d + e], p)
a *= f[n_d] * g[r_d] % m * g[l_d] % m
a %= m
return a
def comb(self, n, r): #calculate nCr mod M
a, b = 0, 1
for x in self._p:
_, _, m, _, _ = x
c = self._generalized_Lucas_theorem(n, r, x)
a = self._CRT(a, b, c, m)
b = b * m
return a
この実装例を用いた解答例を示します。
xxxxxxxxxx
class binomial_coefficient_Lucas_theorem:
#(中略)
n, r, m = map(int,input().split())
binom = binomial_coefficient_Lucas_theorem(m)
print(binom.comb(n, r))