問題文

1AiM1\leq A_i\leq Mを満たす長さNNの非負整数列AA全てにおいて

max(A)+min(A)\max(A)+\min(A)の値の和をmod109+7\mod 10^9+7 で求めなさい。

制約

  • 1N1091\leq N \leq 10^9
  • 1M1091\leq M \leq 10^9

入力

入力はすべて整数である

N M

出力

計算結果を一行に出力せよ

サンプル

入力例1

2 2

出力例1

12

これを満たす数列AA(1,1),(1,2),(2,1),(2,2)(1,1),(1,2),(2,1),(2,2)44通りあります

よって (1+1)+(2+1)+(2+1)+(2+2)=12(1+1)+(2+1)+(2+1)+(2+2)=12 を出力します

入力例2

3 5

出力例2

750

入力例3

2000 2000 

出力例3

869714192

mod109+7\mod 10^9+7 で出力することを忘れないでください

入力例4

1000000000 1000000000

出力例4

124658944

提出


Go (1.21)